CITY OF LA VERNE WATER QUALITY REPORT 2013 ach year, California water utilities provide an annual water quality report to their customers. This year's report covers the 2012 calendar year water quality testing and has been prepared in compliance with new regulations called for in the 1996 reauthorization of the Safe Drinking Water Act (SDWA). This report will give you an overview of how the City of La Verne provides your tap water and will explain the many steps we take to insure that the high quality of our water stays protected. The City of La Verne vigilantly safeguards its water supply and, as in years past, the water delivered to your home meets or exceeds the standards required by the state and federal regulatory agencies. In accordance with the SDWA, the City monitors many constituents in your water supply. This report includes only the constituents actually detected in the water. As you will see throughout this report, the water provided to City of La Verne customers meets or exceeds all federal and state quality standards. If you would like more information, or have any questions regarding the quality or delivery of your water service, please contact Daniel W. Keesey, Director of Public Works, City of La Verne, 3660 "D" Street, La Verne, CA 91750, or by phone at (909) 596-8741. The City Council meets on the first and third Mondays of the month in the Council Chambers at the same address above. Types and locations of water sources: Local groundwater provides approximately 30 percent of our water; however, most of our supply (70 percent) is purchased from the Three Valleys Municipal Water District (TVMWD) who treats water received from the Metropolitan Water District of Southern California (MWD). MWD provides supplemental water to about 300 cities and unincorporated areas in Southern California, importing water from two separate sources: the Colorado River and the State Water Project. The water we purchase is treated by Three Valleys Municipal Water District at the Miramar Treatment Plant. The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems. - Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. A source water assessment was conducted for Cartwright Well, La Verne Heights Well 02, La Verne Heights Well 03, Lincoln Well, Mills Tract Well, Old Baldy Well, Amherst Well, and Walnut Well for the City of La Verne Water Department in March 2002. These sources are considered most vulnerable to the following activities not associated with any detected contaminants: hospitals, high density housing, storm drain discharge points, transportation corridors — road-right-of-ways, sewer collection systems, high density septic system, dry cleaners, historic gas stations, confirmed leaking underground fuel tanks, automobile gas stations, plastics/synthetics producers. A copy of the complete assessment may be viewed at: DHS Los Angeles District Office, 1449 Temple Street, Room 202, Los Angeles, CA 90026. You may request a summary of the assessment be sent to you by contacting Chi P. Diep, District Engineer, Metropolitan District, (213) 580-5723. In December 2002, Metropolitan Water District of Southern California completed its source water assessment of its Colorado River and State Water Project supplies. Colorado River supplies are considered to be most vulnerable to recreation, urban/storm water runoff, increasing urbanization in the watershed and wastewater. State Water Project supplies are considered to be most vulnerable to urban/storm water runoff, wildlife, agriculture, recreation and wastewater. A copy of the assessment can be obtained by contacting MWD by phone at (213) 217-6850. Tables 1, 2, 3, 4, and 5 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The Department requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. Some of the data, though representative of the water quality, are more than one year old. The City also participated in unregulated contaminant monitoring. Unregulated contaminant monitoring helps EPA determine where certain contaminants occur and whether it needs to establish regulations for those contaminants. All constituents for this testing were non-detectable (ND) in our groundwater supply with the exception of boron, perchlorate, and vanadium which are listed in table 5. #### TABLE 1 - SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA | TABLE 1 DAME LING HESSELS SHOWING THE DETECTION OF SOCIEDING DASTEINA | | | | | | | | |---|--|--|--|---------------|------------------|--------------------------------------|--| | Microbiological Contaminants
(to be completed only if there was a detection of bacteria) | Groundwater (26 %) Miramar Plant (74%) | | MCL | PHG
(MCLG) | MCL
Violation | Typical Source of Contaminant | | | Total Coliform Bacteria
Highest percent of positive samples in one month
5% | No acute violation,
1 positive sample | No acute violations,
0 positive samples | More than 5% of samples collected in one month with positive detection | 0 | No | Naturally present in the environment | | | Fecal Coliform or <i>E. coli</i> **
2/3/11 sampling station at 7400 Avenida Del Risco
(Note: Not Groundwater) | O acute violation,
O positive sample | No acute violations,
0 positive samples | A routine sample and a repeat sample detect total coliform and either sample also detects fecal coliform or <i>E. coli</i> | | No | Human and animal fecal waste | | ### TABLE 2 - SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER AT RESIDENTIAL TAPS | Lead and Copper (last tested 2009; next test due 2012) | Samples collected | 90 th percentile
level detected | No. of Sites exceeding | AL
AL | PHG | AL
(MCLG) | Typical Source of Contaminant
Violation | |---|-------------------|---|------------------------|----------|------|--------------|---| | Lead (ppb) | 62 | 28 | 0 | 15 | 2 | No | Internal corrosion of household water
plumbing systems; discharges from
industrial manufacturers; erosion of
natural deposits. | | Copper (ppm) | 62 | 0.16 | 0 | 1.3 | 0.17 | No | Internal corrosion of household water plumbing systems; erosion of natural deposits; leaching from wood preservatives. | #### **TABLE 3 - SAMPLING RESULTS FOR SODIUM AND HARDNESS** | Chemical or Constituent (and reporting units) | Groundwater (26%)
(Range) | Miramar Plant (74%)
(Average) | MCL | PHG
(MCLG) | MCL Violation | Typical Source of Contaminant | |---|------------------------------|----------------------------------|------|---------------|---------------|---| | (last tested in 2010; next test 2013)
Sodium (ppm) | 31 – 87 | 57 | none | none | No | Generally found in ground and surface water | | Hardness (ppm) | 110 - 430 | 110 | none | none | No | Generally found in ground and surface water | TABLE 4 - DETECTION OF CONTAMINANTS WITH A PRIMARY DRINKING WATER STANDARD. | Chemical or Constituent | Groundwater (26%) | Miramar Plant (74%) | MCL | PHG | MCL Violation | Typical Source of Contaminant | |--|------------------------------------|---------------------|--------|--------|---------------|---| | (and reporting units) | (Range/Average) | (Range/Average) | | (MCLG) | | | | CLARITY | | | | | | * | | Combined Filter Effluent Turbity (NTU) | ND - 1.9/0.6 | 0.1 | 5 | NS | No | Soil runoff | | ORGANIC CHEMICALS (last tested 2008) | | <u> </u> | | | | | | Bromochloromethane | ND - 2.1/0.23 | _ | none | none | No | Discharge from pharmaceutical and chemical factories; insecticide | | Chloroform | ND - 4.4/0.6 | _ | none | none | No | Discharge from pharmaceutical and chemical factories; insecticide | | Dichloromethane | ND | ND | 5 | 4 | No | Discharge from pharmaceutical and chemical factories; insecticide | | 1,1Dichloroethylene (1,1 – DCE) | ND - 1.10/0.2 | ND | 6 | 10 | No | Discharge from industrial chemical factories | | Trichloroethylene (ppb) | ND - 23/2.5 | ND | 5 | 0.8 | No | Discharge from metal degreasing sites and other factories | | Total Trihalomethanes (ppb) | ND - 6.5/0.83 | 37.1 – 57/47.8 | 80 | N/A | No | By-product of drinking water chlorination | | INORGANIC CHEMICALS (testing required | every three years; last tested 201 | 10) | | | | | | Flouride (ppm) (naturally occurring) | ND - 0.85/0.42 | 0.14 | 2 | 1 | No | Erosion of natural deposits; water additive that promotes strong teeth | | Nitrate as NO3 (ppm) | 38 – 100/63* | 2.6-3.3/1.98 | 45 | 45 | No* | Runoff & leaching from fertilizer; leaching from septic tanks & sewage; erosion of natural deposits | | Perchlorates (ppm) | ND - 20/8* | ND | 6 | 6 | No* | Industrial waste discharge | | RADIONUCLIDES (testing required every ni | ne years; last tested 2006) | | | | | | | Gross Beta Particle Activity (pCi/L) | ND - 4.3/.23 | ND | 50 | (0) | No | Decay of natural and manmade deposits | | Uranium (pCi/L) | 3.2 | ND | 20 | (0) | No | Erosion of natural deposits | | Radium 226 | _ | ND | N/A | 0.05 | No | Erosion of natural deposits | | Radium 228 | ND | ND | N/A | 0.019 | No | Erosion of natural deposits | | Tritium (pCi/L) | - | ND | 20,000 | 400 | No | Erosion of natural deposits | | Stronium-90 | _ | .093 | 8 | 0.35 | No | Decay of natural and manmade deposits | # **TERMS USED IN THIS REPORT** Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. **Primary Drinking Water Standards (PDWS)**: MCLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements. **Secondary Drinking Water Standards (SDWS):** MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels. **Public Health Goal (PHG)**: The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA). **Regulatory Action Level (AL)**: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow **Treatment Technique (TT)**: A required process intended to reduce the level of a contaminant in drinking water Variances and Exemptions: Department permission to exceed an MCL or not comply with a treatment technique under certain conditions. NC: not collected ND: not detectable at testing limit ppm: parts per million or milligrams per liter (mg/L) ppb: parts per billion or micrograms per liter (ug/L) ppt: parts per trillion or nanograms per liter (ng/L) pCi/L: picocuries per liter (a measure of radiation) Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. TABLE 5 – DETECTION OF CONTAMINANTS WITH A SECONDARY DRINKING WATER STANDARD | Chemical or Constituent | Groundwater (26%) | Miramar Plant (74%) | MCL | PHG | MCL Violation | Typical Source of Contaminant | |--|--------------------------------------|---------------------|------|-----------------|---------------|---| | (and reporting units) | (Range/Average) | (Range/Average) | | (MCLG) | | | | AESTHETIC STANDARDS (testing requir | ed every three years; last tested 20 | 10) | 9 | | | | | Chloride (ppm) | 22 – 70/49.6 | 83 | 500 | NS ² | No | Runoff/leaching from natural deposits; seawater influence | | Iron (ppb) | ND - 240/45.5 | ND | 300 | NA | No | Leaching from natural deposits; industrial waste | | Manganese (ppb) | ND - 22/2.4 | ND | 50 | NL=500 | No | Leaching from natural deposits | | Odor Threshold (units) | 1 – 2/1 – 1 | 1 | 3 | NS | No | Naturally occurring organic materials | | Specific Conductance (mS/cm) | 550 — 930/814 | 510 - 530/520 | 1600 | NS | No | Substances that form ions when in water; seawater influence | | Sulfate (ppm) | 64 – 130/97 | 39 | 500 | NS | No | Runoff/leaching from natural deposits; industrial wastes | | Total Dissolved Solids (ppm) | 340 — 630/549 | 310-320/315 | 1000 | NS | No | Runoff/leaching from natural deposits; seawater influence | | ADDITIONAL PARAMETERS | | | | | | | | Alkalinity (ppm) | 140 - 210/188 | 78 - 94/86 | NS | NS | No | Measure of water quality | | Calcium (ppm) | 34 - 150/108 | 28 | NS | NS | No | Measure of water quality | | Magnesium (ppm) | 3 – 32/22 | 13 | 7.9 | NS | No | Measure of water quality | | pH (units) | 7.2 - 8.3/7.6 | 8.2 - 8.4/8.3 | NS | NS | No | Measure of water quality | | Potassium (ppm) | 1.7 - 2.2/1.97 | 2.2 - 2.9/2.55 | NS | NS | No | Measure of water quality | | Total Organic Carbon (ppm) | ND | 1.3 – 2.1/1.6 | NS | NS | No | Various natural and manmade sources | | UNREGULATED CHEMICALS OF NOTE RE | QUIRING MONITORING | | | | | 2772 300 | | Boron (ppb) | ND - 260/1.5 | 130 – 140/135 | NS | NL=1000 | No | Runoff/leaching from natural deposits; industrial wastes | | Vanadium | 5 – 13/7.2 | ND-3.1/1.55 | NS | NL=50 | No | Naturally occurring; industrial waste discharge | - * Any MCL or AL above the MCL is asterisked. Additional information regarding the asterisked items is listed below. - 1 MWD has developed a flavor profile analysis method that can more accurately detect odor occurrences. For more information, contact Three Valleys Municipal Water District (909) 621-5568 - 2 NS means no standard has been set as an MCL or PHG # Summary Information for Contaminants Exceeding an MCL or AL The range for nitrate in the groundwater sample results may be above the MCL. These values are for wells only which account for approximately 26 percent of the total water supplied to our customers. The content at your tap is well below the MCL, ranging from 17 to 34 ppm for nitrate and ND-4.6 ppm for perchlorate. The range for trichloroethylene in the groundwater sample results may also be above the MCL; however, the groundwater goes through an air stripping process that reduces the trichloroethylene to nearly nondetectable levels. Nitrate in dinking water at levels above 45 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in a serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 45 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your healthcare provider. ## **Lead in Drinking Water** If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of La Verne is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. # Additional General Information On Drinking Water All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791). # **More Resources for Water Information** The City of La Verne cares about our customers and the water we supply to them. We always welcome any calls or questions regarding the quality or delivery of our water. Our customer service office can be reached at (909) 596-8744. For more information about water use efficiency and available rebates, please visit the City's website at www.ci.la-verne.ca.us and look for environmental programs in the Public Works Department section. # **CONSERVATION IS A WAY OF LIFE** Use your sprinklers before 10 a.m. or after 7 p.m. any day of the week. 2 Don't allow your irrigation water to overspray or runoff your property. Replace old toilets and clothes washers with high-efficiency models. Never use a hose to clean driveways, sidewalks, patios, walkways, streets, or alleys. Wash only full loads of clothes and dishes. Use water efficiently and fix all leaks. Fix all leaking faucets, showerheads and irrigation systems immediately. Use a bucket and hose nozzle to wash your car. Take shorter showers. For more information please visit the City's web site or call our customer service office. www.ci.la verne.ca.us • (909) 596 8744